We want to find the best prediction of the average number of hours a person spends at work every week if that person spends an average of 10 hours on recreational activities every week.
We will construct a line that adapts to the system by simple linear regression, and then we will find the x-value that makes the line take y=10.
First, we have the data:
We remember that in a simple regression model, we want to write an equation of the form:
![y=\hat{\alpha}+\hat{\beta}x](https://img.qammunity.org/2023/formulas/mathematics/college/5jii9o5clcclgpnkd2vf5wssd5blvf9gq1.png)
where:
![\begin{gathered} \hat{\alpha}=\bar{y}-\hat{\beta}\bar{x} \\ \hat{\beta}=(nS_(xy)-S_xS_y)/(nS_(xx)-S^2_x)_{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kdlu2cqummpatfsn6dg8euluvda2ce8vd0.png)
And the Sx, Sy and Sxx are the sums over all the x-values, the y-values and the multiplication of the x-values and y-values (respectively).
We will find those values:
![\begin{gathered} S_x=\sum ^(13)_(i=1)x_i=370 \\ S_y=\sum ^(13)_(i=1)y_i=336.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8gp3efjskxh9qskq7fps6kfg0ivz5n3n3x.png)
Also, we have:
![\begin{gathered} S_(xx)=\sum ^(13)_(i=1)x^2_i=12600 \\ S_(xy)=\sum ^(13)_(i=1)x_iy_i=8680_{}_{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a7al2kk6m71ap8ak6trv309tqvz161pe33.png)
And applying the formula, having in mind that n=13, we get:
![\begin{gathered} \hat{\beta}=(nS_(xy)-S_xS_y)/(nS_(xx)-S^2_x)_{} \\ =(13(8680)-(370)(336.5))/(13(12600)-(370^2)) \\ =(-11665)/(26900) \\ \approx-0.4336 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pgvsgroue3hhmiezovsou7kvdmjsmwisdo.png)
And, for alpha:
![\begin{gathered} \hat{\alpha}=(1)/(n)S_y-\hat{\beta}(1)/(n)S_x \\ =(1)/(13)(336.5)-(-0.4336)(1)/(13)(370) \\ \approx38.2255 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qucwuvq5b8px8wo0hy46k2waja1076kg9h.png)
This means that the linear regression equation will be:
![y=38.2255-0.4336x](https://img.qammunity.org/2023/formulas/mathematics/college/i4x6ujxzvbgz2byx6nmm5utus6sm4ouzk5.png)
For finding the x-value that will have 10 hours of recreational activities, we replace the 10 value on y, and clear out the variable x:
![10=38.2255-0.4336x](https://img.qammunity.org/2023/formulas/mathematics/college/dsmffb917akwtrgw02oagrq49e9owzd603.png)
And thus,
![\begin{gathered} 10-38.2255=-0.4336x \\ (-28.2255)/(-0.4336)=x \\ 65.09=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w2drn7lnkho6shmz7ly9aegctgpp2mbilp.png)
This means that when a person works 65 hours approximately, he will have 10 hours of recreational activities every week.