We are asked to determine the test statistic for two populations. To do that we will use the following formula:
![z=\frac{\bar{x_2}-\bar{x_1}}{\sqrt[]{(SD^2_2)/(n_2)+(SD^2_1)/(n_1)}}](https://img.qammunity.org/2023/formulas/mathematics/college/tlzqnzhs0led7eipuypbewysdjkfnnbe0z.png)
Where:

Substituting the values we get:
![z=\frac{83.3_{}-75.4}{\sqrt[]{\frac{(17.8)^2_{}}{19}+\frac{(9.7)^2_{}}{12}}}](https://img.qammunity.org/2023/formulas/mathematics/college/v3tyftrl3rzdco2mawjzh7095fcgce8o3y.png)
Solving the operations we get:

Therefore, the test statistic is 1.596.
To determine the P-value we will determine the probability that the test statistic is less than the value we determined. This is:

The value of the probability we find it in the z-table using the value z = 1.596, we get:

Therefore, the p-value is 0.9441.