The volume of this composite figure is the sum of the volume of the cylinder and the cone.
Volume of Cylinder
The formula is
![V=\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/high-school/axumboiozoejyargdo4sskcbefipwsp4rb.png)
Where
V is the volume
r is the radius
h is the height
Given,
r = 5
h = 17.8
Substituting, we find the volume:
![\begin{gathered} V=\pi r^2h \\ V=\pi(5)^2(17.8) \\ V=1398.01 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5ij283ytizs382259hr5sg3nr32exfs3u1.png)
Volume of Cone
The formula is:
![V=(1)/(3)\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/high-school/cb7imlxhz45xpg280bynm05moay5z8zpto.png)
Where
V is the volume
r is the radius
h is the height
Given,
r = 5
h = 6.2
Substituting, we find the volume:
![\begin{gathered} V=(1)/(3)\pi r^2h \\ V=(1)/(3)\pi(5)^2(6.2) \\ V=162.32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8hschobxz19eoadbtngsyq61qz2c2nzbxs.png)
The total volume of the figure is:
1398.01 + 162.32 = 1560.33