Answer:
![(4x^2+22x-12)cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/g9pvb9e8090ot46sf5xs5akfo8caoqwxmx.png)
Explanation:
From the given figure:
• The base of the triangle, b = (4x-2) cm
,
• The perpendicular height, h = (2x+12) cm
The area of a triangle is calculated using the formula:
![A=(1)/(2)bh](https://img.qammunity.org/2023/formulas/mathematics/high-school/9sstqki54txhbml6j22rcfvxwdjny9xtib.png)
Substitute the given expressions:
![\begin{gathered} A=(1)/(2)(4x-2)(2x+12) \\ Factor\text{ }4x-2\implies4x-2=2(2x-1) \\ A=(1)/(2)*2(2x-1)(2x+12) \\ A=(2x-1)(2x+12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/33rxuuivxrt1sjycxhw30q2454sd7mxz55.png)
Next, open the brackets:
![\begin{gathered} A=2x(2x+12)-1(2x+12) \\ =4x^2+24x-2x-12 \\ =(4x^2+22x-12)cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4l73ffa834zginai3qw7u0itowaubcokct.png)
The area of the triangle is:
![(4x^2+22x-12)cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/g9pvb9e8090ot46sf5xs5akfo8caoqwxmx.png)