The expression is:
![(x^2-5x+7)/(x-9)](https://img.qammunity.org/2023/formulas/mathematics/college/qlkrquzm7hgfq4h79rybh8yhjw3oi2zc7u.png)
Part B
To get -9 to -5, we need to add 4. This is important because the factored form will be something like this:
![x^2-5x+7=(x-9)(x+a)](https://img.qammunity.org/2023/formulas/mathematics/college/6edvzaenqkb9dokloqqogowl22y9r3fpk8.png)
And when we distribute it, the middle term will be the sum of -9 and a, so we if we want it to be -5 (as the given expression) a has to be 4.
Part C
Now, looking to the constant part, it will be the multiplication of -9 and a, since we know that a is 4, the constant term is:
![-9\cdot4=-36](https://img.qammunity.org/2023/formulas/mathematics/college/tswu4dg9l76loi12o8erz6prleto3jq1zl.png)
So, we need a constant term of -36 in the numerator.
Part D
Since we already got 7 in the numerator, we have to add -43 to get it to -36.
Part E
![(x^2-5x+7)/(x-9)=(x^2-5x+7+(-43)-(-43))/(x-9)=(x^2-5x-36+43)/(x-9)](https://img.qammunity.org/2023/formulas/mathematics/college/zed7avi9qd6gbo5t9vtiuo2m2eahtg4tgm.png)
Part F
![(x^2-5x+-36+43)/(x-9)=((x-9)(x+4)+43)/(x-9)](https://img.qammunity.org/2023/formulas/mathematics/college/ltm9yugfe03vf5blnwxuz4pb5i5t4m0ifg.png)
Part G
![((x-9)(x+4)+43)/(x-9)=((x-9)(x+4))/(x-9)+(43)/(x-9)](https://img.qammunity.org/2023/formulas/mathematics/college/h8uez5llujg9vy1szk33fief44aodltihw.png)
Part H
![((x-9)(x+4))/(x-9)+(43)/(x-9)=x+4+(43)/(x-9)](https://img.qammunity.org/2023/formulas/mathematics/college/3ifrmxd0ly2fp4s91v82mv9zlamuvsxnnq.png)
So:
![(x^2-5x+7)/(x-9)=x+4+(43)/(x-9)](https://img.qammunity.org/2023/formulas/mathematics/college/8k7jlcolsxs2nkhvjv6cawdcnn5dryitat.png)