Since the function f(x) is
![f(x)=\sqrt[]{x-7}](https://img.qammunity.org/2023/formulas/mathematics/college/p4w9jav3571yxogfsozd6p8flbyz26mdfu.png)
Since there is no square root for negative numbers, then

We will solve it by adding 7 to both sides

Then we can choose values of x from 7 and greater
Let x = 7
![\begin{gathered} f(7)=\sqrt[]{7-7} \\ f(7)=\sqrt[]{0} \\ f(7)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7uu2w2h6hj0j23yalem1udjyx1zepo0859.png)
The 1st ordered pair is (7, 0)
Let x = 11
![\begin{gathered} f(11)=\sqrt[]{11-7} \\ f(11)=\sqrt[]{4} \\ f(11)=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sjqn5ewd5jzi5jyo6plwxfy7ciz93qhw87.png)
The 2nd ordered pair is (11, 2)
Let x = 8
![\begin{gathered} f(8)=\sqrt[]{8-7} \\ f(8)=\sqrt[]{1} \\ f(8)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a5np99m5kcrz5rmdeybuhcvhauikffnl8h.png)
The 3rd ordered pair is (8, 1)
Let x = 16
![\begin{gathered} f(16)=\sqrt[]{16-7} \\ f(16)=\sqrt[]{9} \\ f(16)=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/si2yb7c1lxx4jdlr9pnvwkhxtw6l3fxnfx.png)
The 4th ordered pair is (16, 3)
The 4 ordered pairs are (7, 0), (8, 1), (11, 2), (16, 3)