For this exercise you need to use the Work-rate formula. This is:
![(t)/(t_A)+(t)/(t_B)=1](https://img.qammunity.org/2023/formulas/mathematics/college/87dfqcy0lb9z3iouifkvtuezjs4up7qfn9.png)
Where:
- "t" is the time for the objects A and B together.
- The individual time for object A is:
![t_A](https://img.qammunity.org/2023/formulas/mathematics/college/4fwzn3mld647h2gduah2codf3ai5stwitp.png)
- The individual time for object B is:
![t_B](https://img.qammunity.org/2023/formulas/mathematics/college/k9triaskck7wa12j1pwl8hbhcxf2h13mjd.png)
In this case, you can idenfity that:
![\begin{gathered} t=55 \\ t_A=2t_B \\ _{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pswtpgd3d9mttnkdcr9jk89yemhy96wtnf.png)
Substitute them into the formula:
![\frac{55}{2t_B_{}_{}}+(55)/(t_B)=1](https://img.qammunity.org/2023/formulas/mathematics/college/bd3j4elo202ao728n2u0b8usox0anvcj5u.png)
Now you must solve for:
![t_B](https://img.qammunity.org/2023/formulas/mathematics/college/k9triaskck7wa12j1pwl8hbhcxf2h13mjd.png)
You get that this is:
![\begin{gathered} (55+2(55))/(2t_B)=1 \\ \\ (55+110)/(2t_B)=1 \\ 165=(1)(2t_B) \\ \\ (165)/(2)=t_B_{} \\ \\ t_B=82.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/icuruyq8wgkvfnj4hb1jpoe68hy8j54wlh.png)
The answer is: It takes the smaller pipe 82.5 hours to fill the tank.