We will have the following:
***First:
![h=h_0+v_0\cdot t+(1)/(2)g\cdot t^2](https://img.qammunity.org/2023/formulas/mathematics/college/8xyv367drladn8osdachjigx5p52atumxi.png)
Now, we will determine the value for the speed:
![1840=1600+v_0\cdot(4)+(1)/(2)(-32.17)\cdot(4)^2\Rightarrow240=4v_0-(25736)/(25)](https://img.qammunity.org/2023/formulas/mathematics/college/3dny8si9knmrhoanpb6i08yrlspw302gr3.png)
![\Rightarrow(31736)/(25)=4v_0\Rightarrow v_0=(7934)/(25)\Rightarrow v_0=137.36](https://img.qammunity.org/2023/formulas/mathematics/college/ip43zewa3sxokx2mn14kd7wyk0c5vupwfe.png)
So, the equation for the height of the arrow (h) in feet as a function of the number of seconds t is:
![h=1600+317.36t+(1)/(2)gt^2](https://img.qammunity.org/2023/formulas/mathematics/college/rcom3lxnrl51jsnlsc5z2wjjyyet34fpdq.png)
Here "g" is the gravitational pull of earth.
***Second:
We will determine how much time it would take for the arrow to hit the ground as follows:
![0=1600+317.36t+(1)/(2)(-32.17)t^2\Rightarrow-(3217)/(200)t^2+317.36t+1600=0](https://img.qammunity.org/2023/formulas/mathematics/college/3vsh2ubrfntf6hbxzkxq5kw66ah6wwaesi.png)
![\Rightarrow t=\frac{-(317.36)\pm\sqrt[]{(317.36)^2-4(-(3217)/(200))(1600)}}{2(-(3217)/(200))}\Rightarrow\begin{cases}t\approx-4.163 \\ t\approx23.893\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/qr41qzig1efjwqvricnbvj651vky2ihbkw.png)
So, afeter 23.893 seconds the arrow would hit the ground.