60.0k views
0 votes
Which expression is equivalent to sin(71(1) cos (72) - cos () sin (77.)?1?O cos (5)O sin (5)COS2012sin

Which expression is equivalent to sin(71(1) cos (72) - cos () sin (77.)?1?O cos (5)O-example-1
User RDotLee
by
4.7k points

1 Answer

6 votes

\sin ((\pi)/(12))\cos ((7\pi)/(12))-\cos ((\pi)/(12))\sin ((7\pi)/(12))

Let:


\begin{gathered} A=(\pi)/(12) \\ B=(7\pi)/(12) \end{gathered}

Using the sine difference identity:


\begin{gathered} \sin (A)\cos (B)-\cos (A)\sin (B)=\sin (A-B) \\ so\colon \\ \sin ((\pi)/(12))\cos ((7\pi)/(12))-\cos ((\pi)/(12))\sin ((7\pi)/(12))=\sin ((\pi)/(12)-(7\pi)/(12)) \\ \sin ((\pi)/(12)-(7\pi)/(12))=\sin (-(6\pi)/(12)) \\ \sin (-(\pi)/(2)) \end{gathered}

Answer:


\sin (-(\pi)/(2))

User Daniel Illescas
by
4.9k points