hello
to write an explicit formula, we have to determine what type of sequence is it
7, 35, 17
this is clearly a geometric progression with values of
first term = 7
common ratio = 5
the explicit formula of a geometric progression is given as
![\begin{gathered} a_n=a\cdot r^((n-1))^{} \\ n=\text{nth term} \\ a=\text{first term} \\ r=\text{common ratio} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zlxuecf041re9hu3h1vpns263y5ypd4iap.png)
now let's substitute the variables into the equation
![\begin{gathered} a_n=a\cdot r^((n-1)) \\ a_n=7\cdot5^((n-1)) \\ a_n=35^((n-1)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4mik8qzuan9hwa36ffgxkptgurbopjlr7f.png)
the equation above is the explicit formula for the sequence