Given the equation system:
![\begin{gathered} 1)2x+y=20 \\ 2)6x-5y=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hi117zqvm1205jct9gsti71pilq7l3fax8.png)
To solve the system and determine the value of x, first step is to write one of the equations in terms of y:
![\begin{gathered} 2x+y=20 \\ y=20-2x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/54jckyjbt9m3q1ogb0txpos08pjbkkqm5y.png)
Then replace this expression in the second equation
![\begin{gathered} 6x-5y=12 \\ 6x-5(20-2x)=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w5bsbiii3yfd79aw171twgb7r33glhjxmz.png)
Now that you have an expression with only one unknown, x, you can calculate its value.
Solve the parenthesis using the distributive property of multiplication
![\begin{gathered} 6x-5\cdot20-5\cdot(-2x)=12 \\ 6x-100+10x=12 \\ 6x+10x-100=12 \\ 16x=12+100 \\ 16x=112 \\ (16x)/(16)=(112)/(16) \\ x=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b4me8syxvkskps8iwhot7u9ovzh750z3rg.png)