154k views
1 vote
Write the polynomial function in standard form that has complex roots -2+i and -2-i

User Shubhanshu
by
8.1k points

1 Answer

2 votes

ANSWER


\text{ x}^2\text{ - 4x + 5}

Step-by-step explanation

Given information

The root of the polynomial function are -2 + i and -2- i

To find the standard form of the polynomial function, follow the steps below

Step 1: Express the root of the polynomial in terms of the factor


\begin{gathered} \text{ Given that the roots of the polynomial function are -2+i and -2 - i} \\ \text{ The factors of the above roots can be expressed as} \\ \text{ \lbrack x + \lparen-2 + i\rparen\rbrack and \lbrack x + \lparen-2 - i\rparen\rbrack} \end{gathered}

Step 2: Expand the factors of the polynomial in step 1


\begin{gathered} \text{ \lbrack x + \lparen-2 + i\rparen\rbrack \lbrack x +\lparen-2 -i\rparen\rbrack} \\ [x\text{ -2\rparen + i\rparen\rbrack \lbrack x -2\rparen - i\rparen\rbrack} \\ (x\text{ - 2\rparen}^2\text{ - i}^2 \\ (x\text{ - 2\rparen\lparen x - 2\rparen- i}^2 \\ x^2\text{ - 2x - 2x + 4 - i}^2 \\ x^2\text{ - 4x + 4 - i}^2 \\ \text{ Recall, that i}^2\text{ = -1} \\ \text{ x}^2\text{ - 4x + 4 - \lparen-1\rparen} \\ \text{ x}^2\text{ - 4x + 4 + 1} \\ \text{ x}^2\text{ - 4x + 5} \end{gathered}
\text{ Hence, the polynomial function in standard form is x}^2\text{ - 4x + 5}

User ComFreek
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories