Step-by-step explanation:
To convert from a repeating decimal number to a fraction we have to do the following steps:
1. Let 'x' be the repeating decimal:
![x=0.111\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/c0vwdikotoit6p2olimok441y5wjwbq5h6.png)
2. Let 'n' be the number of decimals that repeat. In this case n = 1
3. Multiply both sides of point 1 by 10^n:
![10x=1.111\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/khnh2yf5jiv4vgn46h5uqk56fe15gfuh5z.png)
4. Substract (1) from (3) to eliminate the repeating part:
![\begin{gathered} 10x-x=1.111\ldots-0.111\ldots \\ 9x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9e0rokwnagnv0wmsieerysm82frg1n342h.png)
5. Solve for x:
![\begin{gathered} 9x=1 \\ x=(1)/(9) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i1ghg7kp9blu274qjqtrfkgoiobk9wh3yo.png)
6. Simplify: in this case, it is the simplest form for this fraction
Answer:
0.111... as a fraction is 1/9