We have
![\begin{gathered} 2x-6y=8\text{ (1)} \\ 5x-4y=31\text{ (2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6mrmdor2w5spj7e3hg6cwfz338zzkbgp62.png)
we must solve the system of equations
First, we will solve for x the first equation
![\begin{gathered} 2x-6y=8 \\ 2x=8+6y \\ x=(8)/(2)+(6)/(2)y \\ x=4+3y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bt3uucy8xqv17xq5yw6u1x5e2f9sp3q0xn.png)
Then, we must replace the value of x in the second equation
![\begin{gathered} 5(4+3y)-4y=31 \\ 20+15y-4y=31 \\ 11y=11 \\ y=(11)/(11) \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kn3sj6rcgeiikntkto2vkrxoagkokkcp72.png)
Finally, we replace the value of y in the equation that we solved for x
![\begin{gathered} x=4+3(1) \\ x=4+3 \\ x=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tiv38whb1hqcpwzdmfe7jskje0vs7zcfay.png)
So, the correct ordered pair is (7, 1)