The Solution:
Step 1:
We shall state the formula for calculating Z-score.
![\begin{gathered} Z=(X-\mu)/(\sigma) \\ \text{Where X}=5\text{00 ( for lower limit) and X=550 for upper limit.} \\ \mu=400 \\ \sigma=50 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fr65kxho04s5rglg4ajog1ww988ujpq8bv.png)
Step 2:
We shall substitute the above values in the formula.
![\begin{gathered} (500-400)/(50)\leq P(Z)\leq(550-400)/(50) \\ \\ (100)/(50)\leq P(Z)\leq(150)/(50) \\ \\ 2\leq P(Z)\leq3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sstan6xqrohfktqd7zgnjrc51y397ngqol.png)
Step 3:
We shall read the respective probabilities from the Z score distribution tables.
From the Z-score tables,
P(3) = 99.9 %
P(2) = 97.7 %
Step 4:
The Conclusion:
The probability that a worker selected makes between $500 and $550 is obtained as below:
![\text{Prob}(500\leq Z\leq550)=99.9-97.7\text{ = 2.2 \%}](https://img.qammunity.org/2023/formulas/mathematics/college/ctgpqg9q4r95db2j3ic9wuae0mzbsznw9o.png)
Therefore, the required probability is 2.2 %