Given the general quadratic equation:
![ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/mvkhuzwnjhb4epaf7jjcoq2vi4zdi4350m.png)
The general solution of the quadratic equation is given by the expression:
![x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/jr19ixi2zltkocy82qhxfiop5lyv4hzbkm.png)
From the problem, we have the quadratic equation:
![3x{}^2+2x-225=0](https://img.qammunity.org/2023/formulas/mathematics/college/2xke3zl11o58pk7qk91pr3c0qfyyi5m6wx.png)
Identifying the coefficients:
![\begin{gathered} a=3 \\ b=2 \\ c=-225 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5soz1n2a43dj93rws0urbi577vr2h59nwb.png)
Then, using the general solution formula:
![\begin{gathered} x=(-2\pm√(4+2700))/(6)=(-2\pm52)/(6) \\ \\ \Rightarrow x_1=(25)/(3) \\ \\ \Rightarrow x_2=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mm84n7d7x4v2t99cuyf2vb2h7am5s867tc.png)
And the solutions on the number line are: