233k views
4 votes
Solve the system by substitution.y =10xY=4x+22

1 Answer

5 votes

Given the system:


\begin{cases}y=10x \\ y=4x+22\end{cases}

Let's clear x from equation 1:


\begin{gathered} y=10x\rightarrow(y)/(10)=x \\ \rightarrow x=(y)/(10)\text{ (A)} \end{gathered}

And substitute (A) in equation 2:


\begin{gathered} y=4x+22 \\ \rightarrow y=4((y)/(10))+22 \\ \rightarrow y=(4)/(10)y+22 \end{gathered}

Solving for y:


\begin{gathered} y=(4)/(10)y+22 \\ \rightarrow y-(4)/(10)y=22 \\ \rightarrow(3)/(5)y=22\rightarrow3y=110\rightarrow y=(110)/(3) \end{gathered}

Now, let's use (A) to calculate x:


\begin{gathered} x=(y)/(10) \\ \rightarrow x=((110)/(3))/((10)/(1))\rightarrow x=(110)/(30)\rightarrow x=(11)/(3) \end{gathered}

This way,


\begin{gathered} x=(11)/(3) \\ \\ y=(110)/(3) \end{gathered}

User Andrew Cumming
by
4.6k points