Answer: 12.66%
First, we will solve the probability that 3 adults, 2 adults, 1 adult and no adult use their smartphones in meetings or classes,
To solve for this, we will use the following equation
![11Cn*0.49^n*0.51^(11-n)](https://img.qammunity.org/2023/formulas/mathematics/college/cvvgn229pzozb2l2r66lp1l1crs7u62dr0.png)
*Probability of adults using their phones for meetings or classes are 0.49.
1 - 0.49 = 0.51
*Probability of adults NOT using their phones are 0.51
Now, with the values of n at:
n = 0
n = 1
n = 2
n = 3
![11Cn*0.49^n*0.51^(11-n)=11C0*0.49^0*0.51^(11-0)=0.0006](https://img.qammunity.org/2023/formulas/mathematics/college/wx2g0yjyoqavho5al36c1p3tybt5famj76.png)
![11Cn*0.49^n*0.51^(11-n)=11C1*0.49^1*0.51^(11-1)=0.0064](https://img.qammunity.org/2023/formulas/mathematics/college/esc1hxsmsqbntoculcaqwm60gnwcmjoark.png)
![11Cn*0.49^n*0.51^(11-n)=11C2*0.49^2*0.51^(11-2)=0.0308](https://img.qammunity.org/2023/formulas/mathematics/college/qupeztkm0v18rytfk87een3h2rqqkm9pto.png)
![11Cn*0.49^n*0.51^(11-n)=11C3*0.49^3*0.51^(11-3)=0.0888](https://img.qammunity.org/2023/formulas/mathematics/college/9vwzwjsf3eddrgwy6ihpi8v3c88e1hvj22.png)
Now, we will add these altogether to get the probability that fewer than 4 of them use their smartphones in meetings or classes.
![0.0006+0.0064+0.0308+0.0888=0.1266=12.66\%](https://img.qammunity.org/2023/formulas/mathematics/college/vdp0xosev5coemshu58dvy5q8xck86or3n.png)
The answer would be 12.66%.