1.7k views
5 votes
Bradley rolls two fair 6-sided dice with faces numbered 1 through 6. What is the probability that the sum of her two rolls has an odd number of factors?

1 Answer

5 votes

Answer:

The probability that the sum of her two rolls has an odd number of factors will be;


P=(7)/(36)

Step-by-step explanation:

We want to find the probability that the sum of her two rolls has an odd number of factors.

For the two rolls the total number of possible outcomes is;


6*6=36

Let us list out the possible outcomes of the two rolls;


\begin{gathered} (\text{outcome)= sum= number of factors of the sum} \\ \mleft(1,1\mright)=2=2\text{ factors} \\ (1,2)=3=2\text{ factors} \\ (1,3)=4=3\text{ factors} \\ (1,4)=5=2\text{ factors} \\ (1,5)=6=4\text{ factors} \\ (1,6)=7=2\text{ factors} \\ \end{gathered}
\begin{gathered} (2,1)=3=2\text{ factors} \\ (2,2)=4=3\text{ factors} \\ (2,3)=5=2\text{ factors} \\ (2,4)=6=4\text{ factors} \\ (2,5)=7=2\text{ factors} \\ (2,6)=8=4\text{ factors} \end{gathered}
\begin{gathered} (3,1)=4=3\text{ factors} \\ (3,2)=5=2\text{ factors} \\ (3,3)=6=4\text{ factors} \\ (3,4)=7=2\text{ factors} \\ (3,5)=8=4\text{ factors} \\ (3,6)=9=3\text{ factors} \end{gathered}
\begin{gathered} (4,1)=5=2\text{ factors} \\ (4,2)=6=4\text{ factors} \\ (4,3)=7=2\text{ factors} \\ (4,4)=8=4\text{ factors} \\ (4,5)=9=3\text{ factors} \\ (4,6)=10=4\text{ factors} \\ \end{gathered}
\begin{gathered} (5,1)=6=4\text{ factors} \\ (5,2)=7=2\text{ factors} \\ (5,3)=8=4\text{ factors} \\ (5,4)=9=3\text{ factors} \\ (5,5)=10=4\text{ factors} \\ (5,6)=11=2\text{ factors} \end{gathered}
\begin{gathered} (6,1)=7=2\text{ factors} \\ (6,2)=8=4\text{ factors} \\ (6,3)=9=3\text{ factors} \\ (6,4)=10=4\text{ factors} \\ (6,5)=11=2\text{ factors} \\ (6,6)=12=6\text{ factors} \end{gathered}

From the listed possible outcomes, the number of oucomes with odd number of factors of the sum is;


n_A=7

Total number of possibles outcomes is;


n_T=36

The probability that the sum of her two rolls has an odd number of factors will be;


\begin{gathered} P=(n_A)/(n_T)=(7)/(36) \\ P=(7)/(36) \end{gathered}

User Mark Rummel
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories