SOLUTION
The limit of a function at a point aa in its domain (if it exists) is the value that the function approaches as its argument approaches a.
The limit of a function F exist if and only if
![\begin{gathered} \lim _(x\rightarrow x^+)f(x)=\lim _(x\rightarrow x^-)f(x) \\ \\ \text{The left-hand limit =The Right-hand Limit} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bhpk2daqw7ngwbrn3gjrfniik96e1wjbzw.png)
Considering the image given, the limit of the function from the left is from the first graph
![\lim _(x\rightarrow1^-)f(x)=4\Rightarrow\text{ The left hand limit}](https://img.qammunity.org/2023/formulas/mathematics/college/pvf46a95unwi5vhvd99sqs074meqk5uf8j.png)
Similarly, the limit of f(x) from the right-hand side is on the second graph
![\lim _(x\rightarrow1^+)f(x)=-2\Rightarrow The\text{ Right -hand limit}](https://img.qammunity.org/2023/formulas/mathematics/college/dk4g59jzey92pwrndbj97b8jqx8lyjnkig.png)
Since
![\begin{gathered} \text{Left-hand limit}\\e Right\text{ hand imit} \\ 4\\e-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3l8xs9r5aq0rodeepf9jr149abxp26syc2.png)
Therefore
The Limit does not exist (D)