Given the figure in the attached image;
![\begin{gathered} m\measuredangle\text{PRQ}=25^(\circ) \\ m\measuredangle QTU=105^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zctwdz9xsoxo16d10zl55wab96y14qhd4m.png)
The angle PQS and QTU are corresponding angles so they are congruent.
![m\measuredangle PQS=m\measuredangle QTU=105^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/zbqijzrdktoxtuj3vk7oazp7cj52olz7ja.png)
Also, the angle PQS is an exterior angle to the angles PRQ and RPQ. So, the sum of angles PRQ and RPQ will give the angle PQS;
![m\measuredangle PQS=m\measuredangle PRQ+m\measuredangle RPQ](https://img.qammunity.org/2023/formulas/mathematics/college/9dzitxpp7l08fufqtuqboimc060xqxwdwa.png)
substituting the given values;
![\begin{gathered} m\measuredangle PQS=m\measuredangle PRQ+m\measuredangle RPQ \\ 105^(\circ)=25^(\circ)+m\measuredangle RPQ \\ m\measuredangle RPQ=105^(\circ)-25^(\circ) \\ m\measuredangle RPQ=80^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/14o07jmen0o9rfwzhz0weogwbc8b45w8fx.png)
Therefore, the measure of angle RPQ is;
![m\measuredangle RPQ=80^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/8et260rcnnvbp1p9q3a5iwtzvapv3c0vmd.png)