304,923 views
4 votes
4 votes
Before every​ flight, the pilot must verify that the total weight of the load is less than the maximum allowable load for the aircraft. The aircraft can carry 37 ​passengers, and a flight has fuel and baggage that allows for a total passenger load of 6,216 lb. The pilot sees that the plane is full and all passengers are men. The aircraft will be overloaded if the mean weight of the passengers is greater than 6216/37 = 168 lb. What is the probability that the aircraft is​ overloaded

User Reena
by
2.8k points

1 Answer

10 votes
10 votes

Answer:

The probability that the aircraft is overload = 0.9999

Yes , The pilot has to be take strict action .

Explanation:

P.S - The exact question is -

Given - Before every​ flight, the pilot must verify that the total weight of the load is less than the maximum allowable load for the aircraft. The aircraft can carry 37 ​passengers, and a flight has fuel and baggage that allows for a total passenger load of 6,216 lb. The pilot sees that the plane is full and all passengers are men. The aircraft will be overloaded if the mean weight of the passengers is greater than 6216/37 = 168 lb. Assume that weight of men are normally distributed with a mean of 182.7 lb and a standard deviation of 39.6.

To find - What is the probability that the aircraft is​ overloaded ?

Should the pilot take any action to correct for an overloaded aircraft ?

Proof -

Given that,

Mean, μ = 182.7

Standard Deviation, σ = 39.6

Now,

Let X be the Weight of the men

Now,

Probability that the aircraft is loaded be

P(X > 168 ) = P(
(x - \mu)/(\sigma) > (168 - \mu)/(\sigma) )

= P( z >
(168 - 182.7)/(39.6) )

= P( z > -0.371)

= 1 - P ( z ≤ -0.371 )

= 1 - P( z > 0.371)

= 1 - 0.00010363

= 0.9999

⇒P(X > 168) = 0.9999

As the probability of weight overload = 0.9999

So, The pilot has to be take strict action .

Before every​ flight, the pilot must verify that the total weight of the load is less-example-1
User Robin Dirksen
by
3.2k points