114k views
3 votes
How to find the inverse of a matrix of it exists Question number 15

How to find the inverse of a matrix of it exists Question number 15-example-1

1 Answer

3 votes

2x2 matrix's inverse:


\begin{gathered} A^((-1))=\begin{bmatrix}{a} & {b} & {} \\ {c} & {d} & {}\end{bmatrix}^((-1))=(1)/(ad-bc)\begin{bmatrix}{d} & {-b} & {} \\ {-c} & {a} & \end{bmatrix} \\ \\ \\ It\text{ exists only if: } \\ ad-bc\\e0 \end{gathered}

For the given matrix:


\begin{gathered} \begin{bmatrix}{6} & {-3} & \\ {-8} & {4} & {}\end{bmatrix} \\ \\ A^((-1))=(1)/(6*4-(-3)*(-8))\begin{bmatrix}{4} & {3} & {} \\ {8} & {6} & {}\end{bmatrix} \\ \\ A^((-1))=(1)/(24-24)\begin{bmatrix}{4} & {3} & {} \\ {8} & {6} & {}\end{bmatrix} \\ \\ A^((-1))=(1)/(0)\begin{bmatrix}{4} & {3} & {} \\ {8} & {6} & {}\end{bmatrix} \\ \\ \end{gathered}As the determinat (ad-bc) is 0 the matrix isn't a invertible matrix. The inverse of the given matrix doesn't exist

User Prez
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.