ANSWER

Step-by-step explanation
Parameters given:
Mean, μ = 64
Standard deviation, σ = 9
To find the cutoff score, we want to find the score that has a corresponding z-score which represents the top 20% of the data.
To do this, first, we have to subtract 20% from 100%:

Now, we have to use the standard normal table to find the z score that corresponds to the closest value to 80% (0.80) on the standard normal table i.e. P(x > 80).
From the table, we see that the z-score that corresponds to 0.80 (0.79955 from the table) is 0.84.
Now, using the formula for z-score, find the cutoff score:

where x = cutoff score
Solving for x, we have that:

That is the cutoff score.