Given: Parallel lines PQ and RS. Triangle ABD and BDC are such that
![\begin{gathered} BD=CD \\ m\angle ABR=50\degree \\ m\angle ADB=65\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t0vn3vb9wja5q0vb6sez3fdc4l4o7e6snv.png)
Required: To determine the triangle ABD type and calculate the angle BDC, ABD, and angle BAD.
Explanation: Since line PQ is parallel to line RS,
![\angle ADB=\angle DBC=65\degree](https://img.qammunity.org/2023/formulas/mathematics/college/snqrsylpj5h70n1to09zkpt82hff67b2sc.png)
Now since BD=CD, triangle BCD is an isosceles triangle. Hence,
![\angle DBC=\angle DCB=65\degree](https://img.qammunity.org/2023/formulas/mathematics/college/9vkqzxucdhyazlljzez17plxzqcrq2ipyj.png)
Now, in triangle BCD, we have
![\begin{gathered} \angle B+\angle C+\angle D=180\degree\text{ \lparen Angle sum property\rparen} \\ 65\degree+65\degree+\angle D=180\degree \\ \angle D=50\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uh84pcfe2fgxi02we6m7sr256c0ng8egie.png)
Now RS is a straight line. Hence at point B, we have
![\begin{gathered} 50\degree+\angle ABD+\angle DBC=180\degree\text{ \lparen Linear pair\rparen} \\ \angle ABD=65\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i44lgupyb5lec794muzoi92etc1pdo3t5w.png)
Finally, in triangle ABD, we have
![\begin{gathered} \angle A+\angle B+\angle D=180\degree \\ \angle A+65\degree+65\degree=180\degree \\ \angle A=50\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aj3laiz7za44j3oywe5hq6u3hl2kmd0l1k.png)
Now since in triangle ABD, we have
![\angle ABD=\angle ADB](https://img.qammunity.org/2023/formulas/mathematics/college/mbbcdlmqrz4i9wpie81i0d2lprzr7bc28g.png)
The triangle ABD is isosceles.
Final Answer:
![\begin{gathered} \angle BDC=50\degree \\ \angle ABD=65\degree \\ \angle BAD=50\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/djyhf25e72v5ylkhu5jes21ak27ar0p09s.png)
The triangle ABD is isosceles.