Given,
The equations are
![\begin{gathered} 4x-6y=-7..............(1) \\ -2x+3y=18............(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8h148hyaakvs8fg6u7fkgmkcrfqyc7qpr8.png)
To find: Does the following system have a unique solution? Why?
Solution:
The determinant of the given equations are
![\begin{gathered} \begin{bmatrix}{4} & {-6} \\ {-2} & {3}\end{bmatrix}=\begin{bmatrix}{-7} & {} \\ {18} & {}\end{bmatrix} \\ 4*3-(-6*-2) \\ =12-12 \\ =0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v6zz0191pwysg64iezk2uddl5b80umg75g.png)
For unique solutions, the condition is
![\begin{gathered} (a_1)/(a_2)=(b_1)/(b_2) \\ (4)/(-2)=(-6)/(3) \\ -2=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c3kzf8xwag9zzl9p15ldcgfthwtas7gz23.png)
Condition satisfied.
Hence, the given equations have a unique solution.