23.6k views
1 vote
Use quadratic formula to find the roots of x^2+2x-7

User JKillian
by
4.3k points

1 Answer

2 votes

Okay, here we have this:


x^2+2x-7=0

We will solve using the general formula, then we obtain:


\begin{gathered} x_(1,2)=\frac{-2\pm\sqrt[]{2^2-4\cdot1\cdot(-7)}}{2\cdot1} \\ =\frac{-2\pm\sqrt[]{4+28}}{2} \\ =\frac{-2\pm\sqrt[]{32}}{2} \\ =\frac{-2\pm4\sqrt[]{2}}{2} \end{gathered}

Let's separate the solutions:


\begin{gathered} x_1=\frac{-2+4\sqrt[]{2}}{2} \\ =\frac{2(-1+2\sqrt[]{2})}{2} \\ =-1+2\sqrt[]{2} \end{gathered}
\begin{gathered} x_2_{}=\frac{-2-4\sqrt[]{2}}{2} \\ =\frac{2(-1-2\sqrt[]{2})}{2} \\ =-1-2\sqrt[]{2} \end{gathered}

Finally we obtain that the roots are: -1+2โˆš2 and -1-2โˆš2.

User Evgeny Makarov
by
3.4k points