Answer
Step-by-step explanation
Given:
A spherical balloon is inflated with gas at the rate of 800 cubic centimeters per minute means
![(dV)/(dt)=800\text{ }cm^3\text{/}min](https://img.qammunity.org/2023/formulas/mathematics/college/6e6efdpduydapw0dt6pu0vvsger0cfgigm.png)
(a) The rates of change of the radius when r = 30 centimeters and r = 85 centimeters is calculated as follows:
![\begin{gathered} V=(4)/(3)\pi r^3 \\ \\ (dV)/(dr)=(4)/(3)*3\pi r^(3-1) \\ \\ (dV)/(dr)=4\pi r^2 \\ \\ But\frac{\text{ }dV}{dr}=(dV)/(dt)/(dr)/(dt) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/593yiy02hw3cjkzew16sb1j1j5fa5w93u1.png)
So when r = 30, we have
![\begin{gathered} (dV)/(dr)=4\pi(30)^2 \\ \\ (dV)/(dr)=4*\pi*900 \\ \\ (dV)/(dr)=3600\pi \\ \\ From\text{ }(dV)/(dr)=(dV)/(dt)/(dr)/(dt) \\ \\ Putting\text{ }(dV)/(dt)=800,\text{ }we\text{ }have \\ \\ 3600\pi=800/(dr)/(dt) \\ \\ (dr)/(dt)=(800)/(3600\pi)=(800)/(3600*3.14) \\ \\ (dr)/(dt)=0.071\text{ }cm\text{/}min \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/okh8hqkv5nyzvrnrczpyqgz3p4vdumt3ys.png)
Therefore, the rate of change of the radius when r = 30 is dr/dt = 0.071 cm/min.
For when r = 25 cm, the rate of change is:
![](https://img.qammunity.org/2023/formulas/biology/high-school/th3y35ipo1jqnb1pyz12bkyph7hz83zofb.png)