Given that ABCD is a parallelogram, prove that
![\begin{gathered} \bar{AB}\cong\bar{CD} \\ \bar{BC}=\bar{DA} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r69op9weppa3fg0wxjnrfqyhlv9o9dt3oj.png)
step 1: Sketch the parallelogram
step 2: The diagonal AC, divides the parallelogram into two triangles
![\begin{gathered} \Delta ADC\text{ and }\Delta ABC \\ Note\text{ that,} \\ \angle DAC=\angle ACB\text{ ( the angles are alternate)} \\ \angle DCA=\angle BAC\text{ (the angles are alternate)} \\ side\text{ AC = AC (common sides for both triangles)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7zfzhtxkn4dnqd2v23d5nh3sfrwtfje5i0.png)
step 3: By the ASA (Angle-Side-Angle) congruency theorem,
![\begin{gathered} \Delta ADC\cong\Delta ABC \\ (The\text{ two triangles are congruent)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ii86mml9sbiv768ckdl11ilxq4rbki6f71.png)
Hence, by CPCT (corresponding parts of congruent triangles)
![\begin{gathered} \bar{AB}\cong\bar{CD}\text{ } \\ \bar{BC}\cong\bar{DA} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6vaxe7v2m77u4zqfbytns4ba5bpfmt4mtu.png)