We are given the following expression:
![(ab)^(-2)](https://img.qammunity.org/2023/formulas/mathematics/college/meb2djhngyo97k5rcx5c8kwg1va6x0x8ii.png)
First, we will use the following property of exponentials:
![(xy)^(-c)=x{}^(-c)y^(-c)](https://img.qammunity.org/2023/formulas/mathematics/college/84hgyvnuzgrkueuu53aznn1t5szvn054db.png)
Applying the property we get:
![(ab)^(-2)=(a^(-2))(b^(-2))](https://img.qammunity.org/2023/formulas/mathematics/college/kd3lpg0o4qpox8s0vmddwhafka6e0hnkx2.png)
Now, we use the following property of exponentials:
![x^(-c)=(1)/(x^c)](https://img.qammunity.org/2023/formulas/mathematics/college/8j54nzfl3zbzu2hnshvgi4y9rt3t6qvkx0.png)
Applying the property we get:
![(a^(-2))(b^(-2))=(1)/((a^2)(b^2))=(1)/((ab)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/c5zzikty2r0lslim3g0f1ac41p7qughzm3.png)
Since we can't simplify any further this is the final answer.