The information we have is:
Mean:
![\mu=25](https://img.qammunity.org/2023/formulas/mathematics/college/qdiiravpgugg140k0rh4vgnwu8splggrgi.png)
Standard deviation:
![\sigma=2.5](https://img.qammunity.org/2023/formulas/mathematics/college/237zaapoyj4a7n5fgnu7tky4lvx6zyxeyq.png)
Value of x:
![x=29](https://img.qammunity.org/2023/formulas/mathematics/high-school/hukt7mq3npp5lzho1q0u9zo1j1wn4ap1m1.png)
--------------------------------------------------------
To solve this problem, we need to use the z-score formula:
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/h06hsre30elxbqnbdkqzw5pbp57988qa0r.png)
Substituting our values:
![z=(29-25)/(2.5)](https://img.qammunity.org/2023/formulas/mathematics/college/j3qk5b7vbg3ufkyr2akzbi42vvcvnwb3p5.png)
We need to solve the subtraction first:
![z=(4)/(2.5)](https://img.qammunity.org/2023/formulas/mathematics/college/yincm5evt97oqtxlqrwybvsan8qbh16w9g.png)
Finally, solve the division to find the z-score:
![z=1.6](https://img.qammunity.org/2023/formulas/mathematics/college/3r8glonzhlud9geywqq1lh6ejvwxxan59f.png)
the z-score is 1.6
Answer: 1.6