116k views
4 votes
Marc sold 457 tickets for the school play. Studen tickets cost $2 and adult tickets cost $3. Marc's sales totaled $1161. How many adult tickets and how many student tickets did Marc sell? 210 adult, 247 student b. 247 adult, 210 student 215 adult, 242 student d. 242 adult, 215 student

User Jens Bodal
by
4.6k points

1 Answer

3 votes

The given situation can be written as a system of equations. Based on the given information you have:

x + y = 457

2x + 3y = 1161

where x is the number of student tickets and y is the number of y tickets.

In order to determine the values of x and y, proceed as follow:

- multiply the first equation by -2:

(x + y = 457)(-2)

-2x - 2y = -914

- then, add the previous equation to the second equation of the system:

-2x - 2y = -914

2x + 3y = 1161

y = 247

- next, replace the previous value of y into the first equationof the system, and solve for x:

x + y = 457

x + 247 = 457

x = 457 - 247

x = 210

Hence, the number of student tickest sold was 210, and adult tickets sold was 247

User Tarik Tutuncu
by
4.6k points