We have the next given function:
![f(x)=\sqrt[3]{x}-2](https://img.qammunity.org/2023/formulas/mathematics/college/9lo600rie2hlht6h02k516j49z94s525ob.png)
To find the first point, we need to use:
![\sqrt[3]{x}=0](https://img.qammunity.org/2023/formulas/mathematics/college/lixx21kvhv2qw438hm767ydnd7915nls5c.png)
Solve the equation for x:
![(\sqrt[3]{x})^3=(0)^3](https://img.qammunity.org/2023/formulas/mathematics/college/v951dfpq6fk5a4h75yvtxfx8pq41hgurc2.png)

So, when x=0, we got the first point (0, -2), because:
![y=\sqrt[3]{x}-2](https://img.qammunity.org/2023/formulas/mathematics/college/m6szjqorylset3scy5txkule18fuyij6cy.png)

Then

Let's find the points on right, let use x=8 and x=27
Replace on the function, when x=8
![y=\sqrt[3]{x}-2](https://img.qammunity.org/2023/formulas/mathematics/college/m6szjqorylset3scy5txkule18fuyij6cy.png)
![y=\sqrt[3]{8}-2](https://img.qammunity.org/2023/formulas/mathematics/college/khwv4r11xw84wb81r7bg6rvg5nkky8wq6a.png)


So, it represents the point (8,0)
Now, when x=27
![y=\sqrt[2]{27}-2](https://img.qammunity.org/2023/formulas/mathematics/college/qrw9o51be2vjjdgo6skmtigstm673aju1x.png)


This corresponds to the point (27,1)
Now, for points on the left side:
When x=-8
![y=\sqrt[3]{-8}-2](https://img.qammunity.org/2023/formulas/mathematics/college/mk9pbsgpkquvmee2w17u8k4zgbx21d2t4m.png)

Which represents the point (-8,-4)
When x=-27
![y=\sqrt[3]{-27}-2](https://img.qammunity.org/2023/formulas/mathematics/college/yz2ez4h6w5o38pv4uu3vtf0vrip1uw0w2w.png)

Which represents the point (-27, -5)
Finally, graph these four points on the cartesian plane.