Solution
The given function is
![f(x)=4x^3](https://img.qammunity.org/2023/formulas/mathematics/college/77xizf2m21m8qsuaexpxbu31xjjhtx9cm8.png)
With given interval
![\lbrack1,2\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/71l3k7mdr99upkme16vlx24ba101gx9yvm.png)
The function is differentiable on the open interval (1,2) and it is continuous on the closed interval [1,2]
Therefore mean value theorem can be used
Calculating the c value iit follows:
![f^(\prime)(c)=(f(2)-f(1))/(2-1)](https://img.qammunity.org/2023/formulas/mathematics/college/lo8ly41we332gmb0mw8k9nuxqp06vzpt1r.png)
This gives
![\begin{gathered} f^(\prime)(c)=(4(2)^3-4(1)^3)/(1) \\ f^(\prime)(c)=(32-4)/(1) \\ f^(\prime)(c)=28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tl547knawmt4i286el2b0yvil993zzx72x.png)
Differentiating the given function gives:
![f^(\prime)(x)=12x^2](https://img.qammunity.org/2023/formulas/mathematics/college/dsm4yfwoy3thqcfa1zhdj7y821zs57zwil.png)
Equate f'(c) and f'(x)
This gives
![x^2=(28)/(12)](https://img.qammunity.org/2023/formulas/mathematics/college/clw4stk6vx3a6dbgivcbz8gszf3j803b9w.png)
Solve the equation for x
![\begin{gathered} x^2=(28)/(12) \\ x^2=(7)/(3) \\ x=\pm\sqrt{(7)/(3)} \\ x=\sqrt{(7)/(3)},x=-\sqrt{(7)/(3)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cldto4p30oy1w9lnv4o9lea9ga2cjso4r2.png)
Therefore the values of c are
![\sqrt{(7)/(3)},-\sqrt{(7)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/gpr2qx9z4udxybij0bwy5yu27xektsh8e7.png)