Solution:
The image below represents the equilateral triangle of 2 inches long
From the triangle above, the given values include
![\begin{gathered} a=2in \\ b=2in \\ c=2in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kbgsyrj8ief48ect8bs7vu4uajj53ef809.png)
Concept:
To calculate the area of the triangle, we will use Heron's formula below
![\begin{gathered} A=\sqrt[]{s(s-a)(s-b)(s-c)} \\ \text{where,s = semi perimter} \\ s=(a+b+c)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xq2qzbz65pckxqtecqestqfqmcxvbi15bu.png)
Step 1:
Calculate the semi perimeter s
![\begin{gathered} s=(a+b+c)/(2) \\ s=(2in+2in+2in)/(2) \\ s=(6in)/(2) \\ s=3in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kp7d1psgac3knv43arm7vvrzk4ijpim0u2.png)
Step 2:
Substitute the value of s,a,b,c in the heron's formula
![\begin{gathered} A=\sqrt[]{s(s-a)(s-b)(s-c)} \\ A=\sqrt[]{3(3-2)(3-2)(3-2)} \\ A=\sqrt[]{3*1*1*1} \\ A=\sqrt[]{3} \\ A=1.73in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kohgu5apxdienwjmbf30k3m0c2fogr3nwv.png)
Hence,
The area of the triangle = 1.73 squared inches