We can use the formula of the moment of inertia given by:
![r\cdot F=I\alpha](https://img.qammunity.org/2023/formulas/physics/college/to2z388kjdy7jpt6xuyluug3510bqobavg.png)
Where:
r = Distance from the point about which the torque is being measured to the point where the force is applied
F = Force
I = Moment of inertia
α = Angular acceleration
So:
![\begin{gathered} r\cdot F=(-0.26*314+290*0.32)=92.8-81.64=11.16 \\ I=0.930 \\ so,_{\text{ }}solve_{\text{ }}for_{\text{ }}\alpha: \\ \alpha=(r\cdot F)/(I) \\ \alpha=(11.16)/(0.930) \\ \alpha=(12rad)/(s^2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/pwnlvaui3rb1z3zgmd2dhrin6wz22tpq5b.png)
Answer:
12 rad/s²