Given two numbers a and b
Their Arithmetic mean (A), Geometric mean (G) and Harmonic mean (H) are given below,
![\begin{gathered} A=(a+b)/(2) \\ G=\sqrt[]{ab} \\ G=\sqrt[]{AH} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xkmukez082thzfdf185vgqlflcpwkkjp9y.png)
To find the formula that correctly relates H, a and b,
Relating the last two equations, i.e the geometric and harmonic mean below,
![\begin{gathered} G=\sqrt[]{ab} \\ G=\sqrt[]{AH} \\ \text{relating both equations} \\ \sqrt[]{ab}=\sqrt[]{AH} \\ \text{Square both sides } \\ (\sqrt[]{AH})^2=(\sqrt[]{ab})^2 \\ AH=ab \\ \text{Make H the subject},\text{ by dividing both sides by A} \\ (AH)/(A)=(ab)/(A) \\ H=(ab)/(A) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ub5wvtqq0emc69mwpuqyg565vkf76g71pu.png)
Substituting for A into the above expression,

Hence, A is the correct option.