107k views
4 votes
I’m stuck on how to verify number 7 and how to find the possible value for sin theta

I’m stuck on how to verify number 7 and how to find the possible value for sin theta-example-1
User Milk
by
7.9k points

1 Answer

6 votes

Given:

There are given the trigonometric function:


sec^2\theta cos2\theta=1-tan^2\theta

Step-by-step explanation:

To verify the above trigonometric function, we need to solve the left side of the equation.

So,

From the left side of the given equation:


sec^2\theta cos2\theta

Now,

From the formula of cos function:


cos2\theta=cos^2\theta-sin^2\theta

Then,

Use the above formula on the above-left side of the equation:


sec^2\theta cos2\theta=sec^2\theta(cos^2\theta-sin^2\theta)

Now,

From the formula of sec function:


sec^2\theta=(1)/(cos^2\theta)

Then,

Apply the above sec function into the above equation:


\begin{gathered} sec^2\theta cos2\theta=sec^2\theta(cos^2\theta-s\imaginaryI n^2\theta) \\ =(1)/(cos^2\theta)(cos^2\theta-s\mathrm{i}n^2\theta) \\ =\frac{(cos^2\theta-s\mathrm{i}n^2\theta)}{cos^2\theta} \end{gathered}

Then,


\frac{(cos^(2)\theta- s\mathrm{\imaginaryI}n^(2)\theta)}{cos^(2)\theta}=(cos^2\theta)/(cos^2\theta)-(sin^2\theta)/(cos^2\theta)

Then,

From the formula for tan function:


(sin^2\theta)/(cos^2\theta)=tan^2\theta

Then,

Apply the above formula into the given result:

So,


\begin{gathered} \frac{(cos^(2)\theta- s\mathrm{\imaginaryI}n^(2)\theta)}{cos^(2)\theta}=(cos^(2)\theta)/(cos^(2)\theta)-(s\imaginaryI n^(2)\theta)/(cos^(2)\theta) \\ =1-\frac{s\mathrm{i}n^2\theta}{cos^2\theta} \\ =1-tan^2\theta \end{gathered}

Final answer:

Hence, the above trigonometric function has been proved.


sec^2\theta cos2\theta=1-tan^2\theta

User PlageMan
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories