12.0k views
0 votes
If the value of tan θ<0 and sin θ>0 , then the angle θ must lie in which quadrant?

User Carte
by
7.6k points

1 Answer

6 votes

Given:


\tan \theta<0\text{ and }\sin \theta>0
\text{ we know that }\tan \theta=(\sin \theta)/(\cos \theta)\text{.}
\text{ Replace tan}\theta=(\sin \theta)/(\cos \theta)\text{ in tan}\theta<0\text{ as follows.}
(\sin \theta)/(\cos \theta)<0
\text{Multiply cos}\theta\text{ on both sides.}


(\sin\theta)/(\cos\theta)*\cos \theta<0*\cos \theta
\sin \theta<0
\text{But given that sin}\theta>0

hence sine value should be equal to 0.


\sin \theta=0
\theta=\sin ^(-1)0
\theta=\sin ^(-1)\sin (n\pi)
\theta=n\pi\text{ where n is integer.}

User Marybel
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories