In order to calculate the standard deviation, we can use the following formula:
![\sigma=\sqrt[]{(\sum ^N_i(x_i-\mu)^2)/(N)}](https://img.qammunity.org/2023/formulas/mathematics/college/orzjc6ljd5d32u896h2npif9e4m43c9b5c.png)
Where μ is the average of the sample and N is the number of elements.
So, calculating the average, we have:

Now, using N = 7 and calculating the standard deviation, we have:
![\begin{gathered} \sigma=\sqrt[]{((3-6)^2+(9-6)^2+(4-6)^2+(4-6)^2+(4-6)^2+(9-6)^2+(9-6)^2)/(7)} \\ \sigma=\sqrt[]{(9+9+4+4+4+9+9)/(7)} \\ \sigma=\sqrt[]{(48)/(7)} \\ \sigma=2.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2batjsliua5qx7cwcs9k1z2nfmg34fydqj.png)
So the standard deviation is 2.6.