We have that the general rule for a dilation is:
![D_k(x,y)=(kx,ky)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/72fqt6sxphsv3nlt57h47zumpyfauqczlw.png)
where k is the scale factor.
In this case, we have the following:
![\begin{gathered} k=2 \\ \Rightarrow D_2(x,y)=(2x,2y) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/49jdqxoiwv3pb05t15sc0fykdct35z7m8a.png)
then, if we apply this transformation on points A, D and I, we have:
![\begin{gathered} D_2(A)=D_2(-1,-1)=(2(-1),2(-1))=(-2,-2)=A^(\prime) \\ D_2(D)=D_2(0,2)=(2(0),2(2))=(0,4)=D^(\prime) \\ D_2(I)=D_2(3,1)=(2(3),2(1))=(6,2)=I^(\prime) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rkkjy6mppwlgg4pcfcvwgnup2xhkzta01i.png)
therefore, the points after the transformations are
A'=(-2,-2)
D'=(0,4)
I'=(6,2)
We have the following graph for the dilated figure:
where the green figure is the dilated figure with scale factor of 2