We have to reduce the expression:

With power-reducing formulas we use identities that let us replace higher exponents terms with lower exponents terms.
We can start using the following identity:

Replacing in our formula we obtain:
![\begin{gathered} 4\sin^4(2x)=4[(1)/(2)(1-\cos(4x))]^2 \\ 4\sin^4(2x)=4\cdot((1)/(2))^2[1-\cos(4x)]^2 \\ 4\sin^4(2x)=4\cdot(1)/(4)\cdot(1^2-2\cos(4x)+\cos^2(4x)) \\ 4\sin^4(2x)=1-2\cos(4x)+\cos^2(4x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rpch620jjgphwoajb4bi8kgymskdubnx5r.png)
We can replace the last term using this identity:

Then, we will obtain:
![\cos^2(4x)=(1)/(2)[1+\cos(8x)]](https://img.qammunity.org/2023/formulas/mathematics/high-school/3m6y5f2vwg2iv62uw8i6bfgf9ljwtl7ci2.png)
Replacing in the equation we obtain:

Answer:
3/2 - 2*cos(4x) + 1/2*cos(8x)