![\begin{gathered} (-\infty,1\rbrack,decreasing \\ (1,\infty)increasing \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l8zfaivdk0knq4y3rosr3qp25maqfaqm1q.png)
1) In this question, we need to remind ourselves of the definition of an increasing or decreasing interval.
2) When the function is increasing we have:
![x_2>x_1,f(x_2)>f(x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/3ajo6drcivrssh1j8rv8hccwafelf9m6hi.png)
On the other hand, a given interval of a function is decreasing when:
![x_2>x_1,f(x_2)<strong>3) </strong>Examining the graph we see two intervals:[tex]\begin{gathered} (-\infty,1\rbrack \\ (1,\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d2oo1mapw5lv0jdaztfgu2qp69wpf1ark9.png)
Note that for the first interval the more the f(x) values increase the x values decrease.
So,
![\begin{gathered} (-\infty,1\rbrack,decreasing \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zt4v0rqmju15nbkf8lqfy9fs82y3qr0vc3.png)
And on the other hand, the more the x values increase the more the f(x) values increase, so:
![(1,\infty)increasing](https://img.qammunity.org/2023/formulas/mathematics/college/wm09nc2bfujx9u8na9v0u8lnfbydygtkj2.png)