Given the function f(x) defined as:
![f(x)=\sqrt[]{x-12}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lcgctj5pnffrgrclh80mb8qirklczriifj.png)
(a)
To find the inverse of f(x), we express the function as:
![y=\sqrt[]{x-2}](https://img.qammunity.org/2023/formulas/mathematics/college/amrkxd1gku8t043bw0kdmy4e0wxe4occ5g.png)
Now, we take the square on both sides:
![\begin{gathered} y^2=x-12 \\ \Rightarrow x=y^2+12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fs7vdrqa862crmfkxem9qyglyaait1hetg.png)
We change the notation:
![\begin{gathered} x\rightarrow f^(-1)(x) \\ y\rightarrow x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/phsyjytfu4nh4fsbf22919ph2wbystssyl.png)
Then, the inverse function is:
![f^(-1)(x)=x^2+12](https://img.qammunity.org/2023/formulas/mathematics/high-school/7npj2w1cwa2wj0rqtnc37vh7vjzsyzeoee.png)
For x ≥ 0
(c)
The domain of f(x) are those values such that:
![\begin{gathered} x-12\ge0\Rightarrow x\ge12 \\ \text{Dom}_f=\lbrack12,\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ckwit2k3i6h9g29zraq1ubnr7vohkbhocf.png)
And the range is the set of all positive numbers (including 0):
![\text{Ran}_f=\lbrack0,\infty)](https://img.qammunity.org/2023/formulas/mathematics/high-school/jxxoj84pilasv1bxu8tvsyu1vy25z1d9ai.png)
For the inverse, the domain of f(x) is its range, and the range of f(x) is its domain:
![\begin{gathered} \text{Dom}_(f^(-1))=\lbrack0,\infty) \\ \text{Ran}_(f^(-1))=\lbrack12,\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lclmid3s3ypdqu5eoz03le68drrqv3kdmq.png)