SOLUTION
Write out the given coordinate of point P and Q

The distance between two point is given by
![\text{dist}=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}^{}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gcte9gt7br7bh6i0ix00lmu81dvw0n7yxm.png)
Given point P(-3,0) and Q(4,3)
![\begin{gathered} x_2=4,x_1=-3,y_2=3,y_1=0 \\ \text{Then } \\ \text{dist(P,Q)}=\sqrt[]{(4-(-3)^2+(3-0)^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/64lthyooa8fhnr4xuiptbjqzo94if91anh.png)
Hence, by simplification, we have
![\begin{gathered} \text{dist(P,Q)}=\sqrt[]{7^2+3^2}=\sqrt[]{49+9}=\sqrt[]{58} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ha7qop81kamm6lholdq2z55u6u02fw9jtj.png)
Hence
The distance between point P and Q is √58 unit
Then
The coordinates of the midpoint is given by

Where

Therefore
The coordinates of the midpoint M of the segment PQ is (1/2,3/2)