SOLUTION
Write out the given coordinate of point P and Q
![\begin{gathered} P=(-3,0) \\ \text{and} \\ Q=(4,3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/s7u2yh8adof089o1gixd89epq773a0747o.png)
The distance between two point is given by
![\text{dist}=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}^{}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gcte9gt7br7bh6i0ix00lmu81dvw0n7yxm.png)
Given point P(-3,0) and Q(4,3)
![\begin{gathered} x_2=4,x_1=-3,y_2=3,y_1=0 \\ \text{Then } \\ \text{dist(P,Q)}=\sqrt[]{(4-(-3)^2+(3-0)^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/64lthyooa8fhnr4xuiptbjqzo94if91anh.png)
Hence, by simplification, we have
![\begin{gathered} \text{dist(P,Q)}=\sqrt[]{7^2+3^2}=\sqrt[]{49+9}=\sqrt[]{58} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ha7qop81kamm6lholdq2z55u6u02fw9jtj.png)
Hence
The distance between point P and Q is √58 unit
Then
The coordinates of the midpoint is given by
![\begin{gathered} Let\text{ the coordinate of the midpoint m be } \\ (x_m,y_m) \\ \text{Hence } \\ (x_m,y_m)=((x_1+x_2)/(2)+(y_1+y_2)/(2)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sz12gd98to696gv5v9yidu68nzx3c4e5gv.png)
Where
![\begin{gathered} x_2=4,x_1=-3,y_2=3,y_1=0 \\ \text{Then} \\ (x_m,y_m)=((-3+4)/(2),(3+0)/(2)) \\ \\ (x_m,y_m)=((1)/(2),(3)/(2)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/thib35bwl97ewtlfcjlr3f7z0hqzof00uh.png)
Therefore
The coordinates of the midpoint M of the segment PQ is (1/2,3/2)