Given QT is perpendciular bisector of PR.
So, PT=TR=6x-2y.
Given, PQ=5y-31, QR=2y+5.
Using Pythagoras theorem in triangle PQT,
![\begin{gathered} \text{Hypotenuse}^2=Base^2+Altitude^2 \\ Altitude^2=\text{Hypotenuse}^2-Base^2 \\ QT^2=PQ^2-PT^2\ldots\ldots.(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zpxm7i4og6fo1vu8t37ngl37o9l1fr3re4.png)
Using Pythagoras theorem in triangle QRT,
![\begin{gathered} \text{Hypotenuse}^2=Base^2+Altitude^2 \\ Altitude^2=\text{Hypotenuse}^2-Base^2 \\ QT^2=QR^2-TR^2\ldots\ldots.(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dy6lso6f5cpgtbf876fup4uatk7mlmgkxk.png)
Equate equations (1) and (2).
![PQ^2-PT^2=QR^2-TR^2](https://img.qammunity.org/2023/formulas/mathematics/college/c34ctnl5n9ko73gvy9ot8d5fjk93n8s0lm.png)
Since PT=TR, we can write
![\begin{gathered} PQ^2-PT^2=QR^2-PT^2 \\ PQ^2=QR^2 \\ PQ=QR \\ 5y-31=2y+5 \\ 5y-2y=5+31 \\ 3y=36 \\ y=(36)/(3)=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/drqkj6634lg2n43lzrm09vrcdhs6d8rpt6.png)
Now, put y=12 in PQ=5y-31.
![PQ=5*12-31=29](https://img.qammunity.org/2023/formulas/mathematics/college/whccx2p2uhefuifhn8k3kvrvsg4zkkdw19.png)
Since PQ=QR, QR=29.
Given, PS=4x+4, SR=7x-17.
Also, PS=SR. Hence,
![\begin{gathered} 4x+4=7x-17 \\ 4+17=7x-4x \\ 21=3x \\ (21)/(3)=x \\ 7=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/um8i1k6qew0bqnl4255ffwt0hjr6whg4ko.png)
Put x=7 and y=12 in PT=6x-2y to find PT.
![PT=6*7-2*12=18](https://img.qammunity.org/2023/formulas/mathematics/college/l32ed8hya7b4f76x3irt8r5az02kawj89l.png)
Hence, PT=18.
Since PT=TR, PR=2PT.
Therefore,
![\begin{gathered} PR=2PT \\ =2*18=36 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1fp0icuyjsvc2bguhmi2qxxeawc2dqoan7.png)
Put x=7 in PS=4x+4 .
![PS=4*7+4=32](https://img.qammunity.org/2023/formulas/mathematics/college/ldibqbjscyb4tinujc1n6vyg5dbowiuqnx.png)
Since PS=SR, SR=32.
Therefore,
x=7
y=12
PQ=29
QR=29
PS=32
SR=32
PT=18
PR=36