SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the general form of a sinusoidal function
![\begin{gathered} f(x)=Asin(Bx+c)-d \\ \text{where A is the amplitude} \\ Period=(2\pi)/(B) \\ c\text{ is the phase shift} \\ \text{d is the vertical shift} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d53dicx9wkbkcrpkrjuclzbo5nbiw293ec.png)
STEP 2: Write the given values
![\begin{gathered} midline=(0,-6) \\ minimum=(2.5,-9) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8ouwxxo8p762bp42vlqzee7vk8xlvkfm2b.png)
STEP 3: find the amplitude
![\begin{gathered} A=absolute\text{ }difference\text{ between the y-values of the minimum point and the midline} \\ A=|-9-(-6)|=|-9+6|=|-3|=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rdzeuqq0g75ald2bj0xglucdkkz8cdpfhg.png)
STEP 4: Get the value of B
![\begin{gathered} Period=4*2.5=10 \\ B=(2\pi)/(10)=(\pi)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zas38zdlml2dq3y0t7enb0fvqrda6e6yb5.png)
STEP 5: Find the value of c
The function was shifted by 5 units to the right, hence, the value of c is -5
STEP 6: Find the value of the Vertical shift
It can be seen from the midline that the function was shifted by 6 units downwards, therefore, d =6.
STEP 7: Get the sinusoidal function by joining these terms
Hence, the sinusoidal function is given by:
![f(x)=3\sin((\pi)/(5)(x-5))-6](https://img.qammunity.org/2023/formulas/mathematics/college/ox68ib7ch4vkxlawe5atn28fvexsxpofhv.png)
![f(x)=3\sin((\pi)/(5)(x-5))-6](https://img.qammunity.org/2023/formulas/mathematics/college/ox68ib7ch4vkxlawe5atn28fvexsxpofhv.png)
![f(x)=3\sin((\pi)/(5)(x-5))-6](https://img.qammunity.org/2023/formulas/mathematics/college/ox68ib7ch4vkxlawe5atn28fvexsxpofhv.png)