We are given the following equation:
![cot^2((\pi)/(2)x)=3](https://img.qammunity.org/2023/formulas/mathematics/college/uecmehxrfepj62znjempssp0yv3i1anaq6.png)
To solve for "x" we will take the square root to both sides:
![cot((\pi)/(2)x)=√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/v2qho4nmluoieeb2a5tdsr79e6zol9huta.png)
Now, we take the inverse function of cotangent:
![(\pi)/(2)x=cot^(-1)√(2)](https://img.qammunity.org/2023/formulas/mathematics/college/k6bh3u8r80tg3yafwegxwemnexe8e6lcrb.png)
Solving the operations:
![(\pi)/(2)x=(\pi)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/iqk1trh02ybzrto608sdrxr5tguc8ffowf.png)
Now, we can cancel out the pi:
![(1)/(2)x=(1)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/v6crq2el2txnung6kfoopsddl3lle7tod6.png)
Now, we multiply both sides by 2:
![x=(2)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/4tioayggx3z61vlmoy85xemankhtb3usye.png)
Simplifying:
![x=(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/3q1943vsq0ege6dbgurtdbkshe3fcf13ni.png)
Therefore, the value of "x" is 1/3