Answer:
C. x = 8 only
Explanation:
Given the quadratic equation:
![x^2-16x+64=0](https://img.qammunity.org/2023/formulas/mathematics/college/ghsdao2qmjifk17f3okwqcbf6b5zj7iy4n.png)
To solve for , we facotorize.
Step 1: Multiply the coefficient of x² and the constant.
![64*1=64](https://img.qammunity.org/2023/formulas/mathematics/college/rvm9c04l7xsc3tydye35hodfr4zgfc9is6.png)
Step 2: Find two numbers that multiply to give 64, and add to give the coefficient of x, -16.
![\begin{gathered} -8-8=-16 \\ (-8)(-8)=64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m4lb2k1dp2sz3eaymtgwezkqrp74aw5ehe.png)
Step 3: Rewrite the middle with those numbers.
![x^2-8x-8x+64=0](https://img.qammunity.org/2023/formulas/mathematics/college/32601bp3pp8mdj3jiwmqy5gyo86zmqbqwu.png)
Step 4: Factor the first two and last two terms separately.
Ensure that the expression in the brackets is the same.
![\begin{gathered} x(x-8)-8(x-8)=0 \\ (x-8)(x-8)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/frxohmb6vis5hic7ut9pgxtsx16fokwu5t.png)
Step 5: Solve for x
![\begin{gathered} x-8=0\;or\;x-8=0 \\ x=8\text{ \lparen twice\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2vkgbw8p7oazh3560f1rqcbilsgdq3jyax.png)
The solution(s) to x² – 16x+64 = 0 is x = 8 only.
Option C is correct.