Answer:
To determine the number of solutions, we have to solve each equation for x.
1.- To solve the equation for x, first, we apply the distribute property on both sides of the equation:
![2x-14=-3x+18.](https://img.qammunity.org/2023/formulas/mathematics/college/9ic04eo6k50neeq518q9adabzjnweklmoz.png)
Adding, 3x to both sides of the equation, we get:
![\begin{gathered} 2x-14+3x=-3x+18+3x, \\ 5x-14=18. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a21jer4g2beym48lr499r9yejpxuqfob0m.png)
Adding 14 we get:
![\begin{gathered} 5x-14+14=18+14, \\ 5x=32. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7say6qfanc546jrva9eypbevc3taoifcx2.png)
Dividing by 5, we get:
![x=(32)/(5)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/f17887vzxb9z4xkqa3fbwt1vbjl1q4nlka.png)
Therefore, the equation has one solution.
2.- Applying the distributive property on the right side of the equation, we get:
![14-3x-5=3x+9.](https://img.qammunity.org/2023/formulas/mathematics/college/n8hmj7tpeiw3ge9bdl7u2nv5wz4352zg67.png)
Adding like terms, we get:
![9-3x=3x+9,](https://img.qammunity.org/2023/formulas/mathematics/college/u8x2ru590ij0nqtcn0bq9tk303cbpb7o8g.png)
therefore, by properties of real numbers,
![x=0.](https://img.qammunity.org/2023/formulas/mathematics/high-school/qvijumubiigt6u77f83xcr693tgohz720e.png)
The equation has 1 solution.
3.- Applying the distributive property on the right side of the equation, we get:
![12x-1=12x-6.](https://img.qammunity.org/2023/formulas/mathematics/college/9gkrfm88txdj8cxz9ua8i6el9ixjlu08gm.png)
Subtracting 12x from both sides of the equation, we get:
![\begin{gathered} 12x-1-12x=12x-6-12x, \\ -1=-6. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rrt2cylo4t8bvv46vilzl58iscfs0fv3ia.png)
The above equality is a contradiction, therefore the equation has no solutions.
4.- Applying the distributive property on the left side of the equation, we get:
![x+5x=6x\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/zbw8yik0ag8g0frfi09evlghw1oc7wregz.png)
Simplifying the above equation, we get:
![6x=6x\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/qmif4gwsp58ykjexn3ekitvvdz7z5pmy76.png)
Since the above equality is always true for any value of x, then the equation has infinitely many solutions.
5.- Applying the distributive property on the left side of the equation, we get:
![36-8x-2x=8-10x\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/hm44ucs5jmazghhymhkdmjybstmetpm5ui.png)
Adding like terms, we get:
![36-10x=8-10x\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/wyc5qkz3iimsjb1m07tas14nv994v65nxw.png)
Adding 10x to both sides of the equation, we get:
![\begin{gathered} 36-10x+10x=8-10x+10x, \\ 36=8. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/11ichobeu91ppf0cj8zobfxjyfx9gxltww.png)
The above equality is a contradiction, therefore the equation has no solutions.